Расчетная схема пассажирского вагона приведена на рис.2 Л. Она представляет вагон в виде механической системы, состоящей из девяти твердых тел, которые соединены между собой упругими и демпфирующими элементами. На этом же рисунке показано принятое положительное направление координат. Из рис.2.1 видно, что:
Х,у,г,6,(р,Ц1 — координаты кузова;
Б-*У Б2~ координаты надрессорных балок первой и второй тележек; хТ’Ут’2Т’@Т’*Рт’Ч*Т1′ координаты рамы первой тележки;
ХТ2’Ут2->2Т2’@Т2’Фт2№т2~ координаты рамы второй тележки;
У к ] ¦>Ук2>Ухк’Ухк2~ координаты колесных пар первой тележки;
УкЗ ’Ук4’’УкЪ-’Уы’ координаты колесных пар второй тележки.
Рис.2.1. Расчетная схема пассажирского вагона (а) и принятая система координат (б).
Исходя из принятой на рис 2.1 расчетной схемы вагона, его состояние в любой момент времени определяется 28-ю координатами. Полный набор этих координат определяет вектор состояния расчетной динамической системы, т.е.
и — {х,Уу2)0,<р,1/)У/б1 >?б2>ХТ ’Уті’^ТІ*@т >Фт>?т>
ХТ2 *Ут2 5 гТ2 » &Т2 ’ Фт2 >?т2> Ук>Ук2 > ? к > ? к2 ’ У кЪ > У к* »
кЗ>?к4}Т ‘ (2.1)
где и — вектор состояния системы.
Символ "т" в (2.1) означает операцию транспонирования строки.
Аналогично (2.1) можно определить векторы состояния по скоростям й и ускорениям и. В этом случае компонентами векторов О и І) будут соответственно первые и вторые производные по времени от координат расчетной схемы, т.е. скорости и ускорения.
⇐Математическая модель движения пассажирского вагона по прямым и криволинейным участкам пути | Динамика пассажирского вагона и пути модернизации тележки КВЗ-ЦНИИ | Дифференциальные уравнения динамики пассажирского вагона⇒