Основы работы двигателей внутреннего сгорания

/ Литература / Тепловозы: Механическое оборудование: Устройство и ремонт / Основы работы двигателей внутреннего сгорания

Тепловые двигатели - это машины, в которых химическая энергия топлива преобразуется сначала в тепловую энергию, а затем в механическую работу. К тепловым двигателям относятся паровые машины, паровые турбины, поршневые двигатели внутреннего сгорания (ДВС). газотурбинные двигатели (ГТД), комбинированные турбо-поршневые двигатели, реактивные двигатели.

Особенность применяемых на тепловозах двигателей внутреннего сгорания поршневого типа состоит в том, что превращение химической энергии в тепловую, совершающееся при сгорании топлива, происходит непосредственно в самом рабочем цилиндре

8. Основы работы двигателей внутреннего сгорания
Рис 11. Принципиальная схема двигателя внутреннего сгоранияв течение очень короткого времени (тысячных долей секунды) при высоких температурах. Это и обусловливает преимущества поршневых ДВС - малые тепловые и гидравлические потери и высокий коэффициент полезного действия, а также компактность.

Процесс превращения тепла в двигателях внутреннего сгорания в работу можно проследить по схеме, изображенной на рис. 11. Поступивший в цилиндр двигателя через клапан 5 воздух сжимается поршнем и нагревается при этом до температуры 600-650 °С, что выше температуры самовоспламенения распыленного жидкого топлива. В конце сжатия в нагретый воздух впрыскивается через форсунку 4 топливо, которое воспламеняется и сгорает. В результате сгорания топлива в цилиндре 2 образуются газы с высокой температурой и давлением. Под давлением газов поршень 1 перемещается вниз и совершает работу. Во время расширения температура и давление газов понижаются. Отдав часть тепла на совершение работы, отработавшие газы выбрасываются в атмосферу через выпускной клапан 3 при движении поршня 1 вверх, а свежий воздух вновь поступает в цилиндр. Затем все повторяется снова. Двигатели внутреннего сгорания имеют шатунно-кривошипный механизм, состоящий из поршня 1, шатуна 6, кривошипа 7 и вала 8. Этот механизм преобразует возвратно-поступательное движение поршня во вращательное движение вала.

В течение одного оборота кривошипа поршень 2 раза изменяет направление движения. Это происходит в так называемых «мертвых» положениях (или «мертвых» точках) механизма, которые характерны тем, что сила, действующая на поршень, находящий ся в одном из этих положений, не вызывает вращающего момента на кривошипе. Между поршнем, находящимся в верхней мертвой точке (в.м.т.), и крышкой цилиндра заключен объем пространства сжатия или камеры сжатия. Отношение полного объема цилиндра к объему камеры сжатия называется степенью сжатия.

Для удовлетворения нужд народного хозяйства двигатели внутреннего сгорания поставляются промышленностью в разнообразном исполнении: мощностью от I до 20 000 кВт в одном агрегате, с числом цилиндров от 1 до 20 и более, частотой вращения вала от 120 до 6000 об/мин.

Двигатели современных тепловозов имеют мощность от 400 до 5000 кВт, частоту вращения вала 750- 1500 об/мин, число цилиндров от 4 до 20. Они расходуют от 200 до 230 г дизельного топлива на 1 кВт-ч выработанной энергии. Удельная масса тепловозных двигателей внутреннего сгорания составляет от 2,5 до 18,5 кг/(кВт-ч)

Способы зажигания топлива. По способу воспламенения топлива поршневые двигатели внутреннего сгорания делятся на двигатели с принудительным зажиганием (низкого сжатия) и с самовоспламенением (высокого сжатия) - дизели. На тепловозах применяются исключительно двигатели высокого сжатия - дизели типов: Д100, Д45, Д50, М750, Д49, Д70. Они значительно экономичнее и мощнее, чем двигатели низкого сжатия.

Двигатели низкого сжатия работают на легком топливе (бензине и керосине). В этих двигателях в цилиндры засасывается не воздух, а рабочая смесь (пары бензина и воздух). Смесь сжимается до температуры, меньшей, чем температура ее самовоспламенения, поэтому зажигание смеси осуществляется принудительно от постороннего источника. В большинстве случаев применяется электрическое зажигание: в цилиндр двигателя вставляют электрическую свечу, включенную в цепь высокого напряжения. В определенный момент цепь тока высокого напряжения замыкается, вследствие чего между электродами овечи возникает искра, которая и воспламеняет рабочую смесьв цилиндре. Двигатели низкого сжатия устанавливают на автомобилях.

В цилиндры двигателей высокого сжатия поступает чистый воздух, который и сжимается. В конце сжатия, когда температура воздуха будет достаточно высокой, топливо в распыленном виде впрыскивается через форсунку в цилиндр и воспламеняется.

Дизели четырехтактные и двухтактные. Четырехтактными называются дизели, у которых полный рабочий цикл - поступление воздуха >в цилиндр, перемешивание и сгорание топлива, расширение газов и удаление их из цилиндра - осуществляется за четыре хода поршня (такта), т. е. за 2 оборота коленчатого вала. У двухтактных двигателей полный рабочий цикл в цилиндре происходит за два хода поршня, т. е. за один оборот коленчатого вала. Следует подчеркнуть, что у четырехтактных дизелей продувка и зарядка цилиндра свежим воздухом происходят Иначе, чем у двухтактных, само же смешение топлива с воздухом и сгорание рабочей смеси у обоих типов дизелей одинаково. Обычно задается вопрос - какой из этих типов дизелей лучше? На протяжении многих лет в различных отраслях народного хозяйства применяются и четырехтактные и двухтактные дизели. Однако качество дизеля определяет не его тактность, а надежность, экономичность, конструкционная и технологическая отработанность, долговечность и, наконец, правильный выбор типа дизеля для данного рода службы. Четырехтактные дизели имеют, как правило, меньший удельный расход топлива, меньшую тепловую напряженность, так как в единицу времени совершают меньшее количество тепловых и силовых циклов, чем двухтактные при тех же условиях.

В двухтактных дизелях проще система газораспределения, но в них хуже очищаются и продуваются свежим воздухом цилиндры. Вместе с тем с 1 л рабочего объема цилиндра при прочих равных условиях у двухтактных дизелей снимается на 60-70 % большая мощность, чем у четырехтактных. Однако с увеличением давления наддува (см. ниже) все яснее вы рисовывается преимущество четырехтактных дизелей перед двухтактными для тепловозов, так как четырехтактные дизели с газотурбинным наддувом имеют более простую систему воздухо-снабжения, более высокую экономичность, а главное - лучшую приспособляемость к переменным эксплуатационным нагрузкам и разным сортам топлива и масла.

На тепловозах ТЭЗ, ТЭ7, тепловозах типов 2ТЭ10, М62 и ТЭП60 установлены двухтактные дизели (2Д100, 10Д100, 14Д40 и 11Д45), а на тепловозах 2ТЭ116, ТЭП70, ТЭМ7, ТЭМ2, ТЭМ1, ЧМЭ2, ЧМЭЗ, ТГМ4 и ТГМЗ, а также на дизель-поездах - четырехтактные дизели (типов Д49, ПД1М, Д50, КбБЗКЮК, М756). Как показывает мировая практика, четырехтактных дизелей строится 65-70 %, а остальные - двухтактные. Двигатели низкого сжатия, за исключением маломощных, изготовляют только четырехтактными.

Способы смесеобразования в дизелях. По способу образования горючей смеси (смесеобразования) дизели делятся на однокамерные - со струйным распыливанием (рис. 12,а) и двухкамерные, которые подразделяются на вихрекамерные с выносной камерой в крышке (рис. 12,6), предкамерные (рис. 12,в) и с камерой в поршне (рис. 12,г).

Наибольшее распространение получили дизели со струйным распыливанием, так как при этом способе смесеобразования расход топлива (при нормальных нагрузках) наименьший. Особенно такие двигатели экономичны при мало изменяющихся нагрузках и частотах вращения. Однако при переменных режимах работы у этих двигателей проявляются существенные недостатки. На малых нагрузках и хо лостом ходу у них ухудшаются распы-ливание топлива и перемешивание его с воздухом. Кроме того, дизели со струйным распыливанием требуют высококачественного топлива и очень точного изготовления и хорошего содержания топливной аппаратуры.

На тепловозах применяются, как правило, дизели с однокамерным струйным смесеобразованием. На таких дизелях установлены топливные насосы (секции) плунжерного типа высокого давления (до 90 МПа) и форсунки закрытого типа. При нагнетании топлива игла форсунки поднимается и топливо под высоким давлением через отверстия в распылителе диаметром 0,30-0,40 мм впрыскивается в камеру сгорания в виде мельчайших капель, которые перемешиваются с воздухом, воспламеняются и сгорают. Величина порции впрыснутого топлива в цилиндр изменяется поворотом плунжера. Управляет величиной подачи регулятор дизеля.

Для образования качественной смеси топлива с воздухом при струйном смесеобразовании необходимо правильно выбирать фор.му камеры сжатия в соответствии с направлением, количеством и дальнобойностью топливных струй, мелкостью распыливания топлива и вихревыми движениями воздуха в камере.

Сущность двухкамерного смесеобразования (см. рис. 12,6 и в) заключается в том, что при ходе поршня к верхнему положению сжатый воздух из цилиндра с объемом Уц перетекает в выносную камеру объемом Ув. Выносная камера может иметь объем 20-60 % общего объема камеры сжатия Ус. Благодаря тангенциальному направлению соединительного канала воздух, вытесняемый поршнем в вихревую камеру (см. рис. 12,6), получает

8. Основы работы двигателей внутреннего сгорания
Рис 12. Схемы способов распыливания топлива и смесеобразования:

а - струйное; б - вихрекамерное; я - предкямерное; г - объемно-пленочное; 1 - форсунка; 2

вращательное движение, что способствует хорошему перемешиванию воздуха с впрыскиваемым топливом.

В дизелях с предкамерным смесеобразованием (см. рис. 12,в) во время сжатия воздух перетекает в предкамеру, куда при невысоком давлении (7-10 МПа) впрыскивается дизельное топливо. Здесь топливо воспламеняется и частично сгорает. Все топливо в предкамере сгорать не может, так как для этого не хватает воздуха. В результате частичного сгорания топлива давление в предкамере быстро возрастает, и газы вместе с несгоревшим топливом выбрасываются в цилиндр, где происходит догорание топлива. Таким образом, хорошее смешение топлива с воздухом обеспечивается тут в основном потоком горячего газа.

При двухкамерном смесеобразовании, как правило, применяются простые и надежные в работе насосы и форсунки. Однако вследствие больших поверхностей охлаждения имеют место повышенные тепловые потери, а также потери энергии при перетекании воздуха и продуктов сгорания через соединительные каналы. Поэтому дизели с двухкамерным смесеобразованием имеют невысокую экономичность.

В двигателях с камерой в поршне (см. рис. 12,г) осуществляется объемно-пленочное смесеобразование. Хорошее качество процесса достигается тем, что факел топлива направляется на горячие стенки поршня и делится на две части: меньшая распыливается в пространстве камеры, а большая, попадая на внутренние стенки камеры поршня, образует тонкую пленку. Создаваемые в процессе движения поршня потоки воздуха как бы сдувают со стенок камеры пары топлива, которые хорошо перемешиваются с воздухом и сгорают. При двухкамерном смесеобразовании качество смеси и ее сгорание мало зависят от нагрузочного и скоростного режима работы двигателя.

⇐ | Технические и тяговые характеристики магистральных и маневровых тепловозов | | Тепловозы: Механическое оборудование: Устройство и ремонт | | Наддув дизелей | ⇒